Some inequalities involving lower bounds of operators on weighted sequence spaces by a matrix norm

Authors

  • A. R. Moazzen Dept. of Math.,University of Sistan and Baluchestan , Zahedan, Iran.
  • R. Lashkaripour Dept. of Math.,University of Sistan and Baluchestan , Zahedan, Iran.
Abstract:

Let A = (an;k)n;k1 and B = (bn;k)n;k1 be two non-negative ma-trices. Denote by Lv;p;q;B(A), the supremum of those L, satisfying the followinginequality:k Ax kv;B(q) L k x kv;B(p);where x 0 and x 2 lp(v;B) and also v = (vn)1n=1 is an increasing, non-negativesequence of real numbers. In this paper, we obtain a Hardy-type formula forLv;p;q;B(H), where H is the Hausdor matrix and 0 < q p 1. Also for thecase p = 1, we obtain kAkw;B(1), and for the case p 1, we obtain Lw;B(p)(A).

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

some properties of fuzzy hilbert spaces and norm of operators

in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...

15 صفحه اول

Lower Bounds of Copson Type for Hausdorff Matrices on Weighted Sequence Spaces

Let = be a non-negative matrix. Denote by the supremum of those , satisfying the following inequality: where , , and also is increasing, non-negative sequence of real numbers. If we used instead of The purpose of this paper is to establish a Hardy type formula for , where is Hausdorff matrix and A similar result is also established for where In particular, we apply o...

full text

Estimates of Norm and Essential norm of Differences of Differentiation Composition Operators on Weighted Bloch Spaces

Norm and essential norm of differences of differentiation composition operators between Bloch spaces have been estimated in this paper. As a result, we find characterizations for boundedness and compactness of these operators.

full text

On Some Weighted Norm Inequalities for Littlewood–paley Operators

It is shown that the Lw,1< p<∞, operator norms of Littlewood–Paley operators are bounded by a multiple of ‖w‖ Ap , where γp = max{1, p/2} 1 p−1 . This improves previously known bounds for all p > 2. As a corollary, a new estimate in terms of ‖w‖Ap is obtained for the class of Calderón–Zygmund singular integrals commuting with dilations.

full text

A new sequence space and norm of certain matrix operators on this space

In the present paper, we introduce the sequence space [{l_p}(E,Delta) = left{ x = (x_n)_{n = 1}^infty : sum_{n = 1}^infty left|  sum_{j in {E_n}} x_j - sum_{j in E_{n + 1}} x_jright| ^p < infty right},] where $E=(E_n)$ is a partition of finite subsets of the positive integers and $pge 1$. We investigate its topological properties and inclusion relations. Moreover, we consider the problem of fin...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 3  issue 1

pages  45- 54

publication date 2012-01-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023